¿cómo resolver este problema de parábolas?

Publicado en 'Universidades' por Strong1, 19 Feb 2018.





  1. Strong1

    Strong1 Miembro frecuente

    Registro:
    3 Jun 2017
    Mensajes:
    164
    Likes:
    35
    Temas:
    17




    Agradecería
    si alguien pudiera ayudarme... La recta L=2Y-1=0 ES DIRECTRIZ de la parabola x^2+2nx+ny-3n=0 ¿cuanto vale n?....
     


  2. JPiero

    JPiero Suspendido

    Registro:
    11 Abr 2012
    Mensajes:
    3,998
    Likes:
    4,784
    Temas:
    9
    Primero tienes que saber que es parábola y directriz
     
    A FernanIglesias le gustó este mensaje.
  3. Mr.Hyde

    Mr.Hyde Miembro de honor

    Registro:
    29 Ago 2014
    Mensajes:
    42,240
    Likes:
    31,579
    Temas:
    661
  4. Gigant0n

    Gigant0n Miembro diamante

    Registro:
    18 Oct 2016
    Mensajes:
    15,507
    Likes:
    11,478
    Temas:
    0
    Completa cuadrados y expresalo en la forma (y-k)^2=4p(x-h)
    Identifica las coordenadas del vértice (en función de n)
    Expresa el valor del parámetro p (en función de n)
    Finalmente, establece la relación entre la distancia del vertice a la directriz, la cual es el valor absoluto de p
    resuelve la ecuacion y obtendrás el valor de n
    Slds
     
    Última edición: 19 Feb 2018
  5. El_Mudo

    El_Mudo Miembro de oro

    Registro:
    8 Abr 2017
    Mensajes:
    6,920
    Likes:
    10,306
    Temas:
    116
    Te dan la ecuación... ya pues papay, completa cuadrados y sale solito.
     
  6. MagodelTiempo

    MagodelTiempo Miembro de bronce

    Registro:
    14 Nov 2016
    Mensajes:
    1,647
    Likes:
    907
    Temas:
    45
    bien dicho, ya no recuerdo parabolas , era muy bueno en matematica basica en el primer ciclo uu
     
  7. DarkestKiller

    DarkestKiller Suspendido

    Registro:
    28 Oct 2017
    Mensajes:
    5,071
    Likes:
    6,334
    Temas:
    97
    Ya olvidé ese tema , pero como dicen , así se resuelve , es pura fórmula y completas cuadrados para tener la ecuación de la parábola y saques las constantes.
     
  8. Gigant0n

    Gigant0n Miembro diamante

    Registro:
    18 Oct 2016
    Mensajes:
    15,507
    Likes:
    11,478
    Temas:
    0
    Lapsus Brutus
    Quise decir, completar cuadrados y llevar a la forma (x-h)^2=4p(y-k), debido a que la directriz es horizontal, por consiguiente el eje focal debe ser vertical, es decir, se abre hacia arriba o hacia abajo dependiendo del signo del parámetro p
    Saludos
     
  9. El_Mudo

    El_Mudo Miembro de oro

    Registro:
    8 Abr 2017
    Mensajes:
    6,920
    Likes:
    10,306
    Temas:
    116
    Aun necesitas ayuda o ya lo hiciste?
     
  10. Esdeath

    Esdeath Miembro de honor

    Registro:
    8 Mar 2012
    Mensajes:
    29,098
    Likes:
    21,166
    Temas:
    694
    completas cuadrados y sale :p
     
  11. MarioJT

    MarioJT Miembro frecuente

    Registro:
    21 Set 2012
    Mensajes:
    65
    Likes:
    17
    Temas:
    2
    Abajo te dejo un link de las ecuaciones de la parábola vertical, en caso no las tengas. Luego, sigue esta receta para los problemas:

    Paso 1: dale forma a la ecuación del problema hasta obtener la misma ecuación de la fórmula de la parábola. Se suele usar el método de completar cuadrados.

    Paso 2: obtén el vértice "(h,k)" y la distancia focal "p" en función de los datos y variables del problema, en este caso en función de "n".

    Paso 3: grafica la parábola para que te hagas una idea de la disposición geométrica del problema. Si el signo que está antes de "4p" en la ecuación es (-) entonces la parábola apunta hacia abajo.

    Paso 4: usar las propiedades de la parábola para despejar tus variables y hallar lo que te pidan. La propiedad más usada es que la distancia del vértice a la directriz es igual a la distancia focal "p".

    SOLUCIÓN

    Paso 1:
    x^2+2nx+ny-3n=0
    x^2+2nx+n^2-n^2+ny-3n=0
    (x+n)^2 = -n(y-n-3)
    (x-(-n))^2 = -4(n/4)(y-(n+3))

    Paso 2:
    h=-n
    k=n+3
    p=n/4

    Paso 3:
    Inicialmente sería una parábola apuntando hacia abajo porque tienes "-4p", y está por debajo de la recta y=1/2 que es su directriz. Su vértice es (-n, n+3)

    Paso 4:
    Propiedad:
    distancia del vértice a la directriz=p
    1/2 - (n+3) = n/4
    Respuesta: n = -2

    Nota: -4p = -4(n/4) = 2 (positivo) por lo tanto, en realidad es una parábola apuntando hacia arriba, pero el problema igual está bien solucionado, ya que se trabaja con variables. Puedes graficarlo para verificar esto.

    https://lh6.googleusercontent.com/p...O6VxlnsL2oc3neCrW2uLSmPa237POzr-=w220-h188-nc
     
    Última edición: 19 Feb 2018
  12. Strong1

    Strong1 Miembro frecuente

    Registro:
    3 Jun 2017
    Mensajes:
    164
    Likes:
    35
    Temas:
    17

    Gracias...!
     
  13. Edrevlav Ycrep

    Edrevlav Ycrep Miembro de plata

    Registro:
    9 Feb 2016
    Mensajes:
    3,898
    Likes:
    1,225
    Temas:
    173
    Mas masticado no te lo pueden dar....como dijeron arriba....si no sabes eso estas en nada.....supongo que ya estudiaste toda la teoria de la parabola....la ecuacion, su directriz, etc con eso sale...
     
  14. Strong1

    Strong1 Miembro frecuente

    Registro:
    3 Jun 2017
    Mensajes:
    164
    Likes:
    35
    Temas:
    17
    Es que vi un video donde se separaban las X y las Y ... a cada una se la dividía entre dos y luego se lo elevaba al cuadrado...

    Era, por que y no estaba elevado al cuadrado... Gracias!